caution larry

Hi, I’m Kim! This site provides a little insight to my journey of being diagnosised with Remitting Relapsing Multiple Sclerosis on October 26th 2004. I review books and documentaries, post MS-related news, and share my photos.

Subscribe (RSS)

no larry

My bloglines



November 2004
December 2004
January 2005
February 2005
March 2005
April 2005
May 2005
June 2005
July 2005
August 2005
September 2005
October 2005
November 2005
December 2005
January 2006
February 2006
March 2006
April 2006
May 2006
June 2006
July 2006
August 2006
September 2006
October 2006
November 2006
December 2006
January 2007
February 2007
March 2007
April 2007
May 2007
June 2007
July 2007
August 2007
September 2007
October 2007
November 2007
December 2007
January 2008
February 2008
March 2008
April 2008
May 2008
June 2008
July 2008
August 2008
September 2008
October 2008
November 2008
December 2008
January 2009
February 2009
March 2009
April 2009
May 2009
June 2009
July 2009
August 2009
September 2009
October 2009
November 2009
December 2009
January 2010
February 2010
March 2010
May 2010
June 2010
July 2010
September 2010
November 2011


Tuesday, January 29, 2008
Genetic differences in MS patients
So, have a read below and tell me... would you want to know what your genetic make up is to get better treatment?

"By comparing the DNA of patients with multiple sclerosis whose symptoms are reduced by interferon beta therapy to the DNA of those who continue to experience relapses, researchers may have identified important genetic differences between the two, according to an article posted online today that will appear in the March 2008 print issue of Archives of Neurology, one of the JAMA/Archives journals. These differences could eventually be used to help predict which treatments will help which patients.

Esther Byun, M.D., of the University of California, San Francisco, and colleagues of a multi-center international collaboration followed a group of 206 Southern European patients with relapsing-remitting MS—the most common type, in which patients experience periods of symptoms followed by periods of symptom-free remission—for two years after they began interferon beta therapy. Every three months, neurologists analyzed patients’ disability levels; throughout the study, 99 responded positively to interferon beta and 107 did not.

The researchers pooled the DNA of individuals in each group and used microarrays to identify, across the genome, genetic markers associated with the response to interferon beta. They identified the top 35 single nucleotide polymorphisms (SNPs), changes in a single base of DNA, that were candidates for further analysis. They then located these SNPs in each individual participant to see if the mutations apparent in responders differed from those in non-responders. After this analysis was complete, an additional 81 individuals with MS (44 responders and 35 non-responders) were included and the DNA of responders was again compared to that of non-responders.

Of the 35 candidate SNPs identified in the first screen, 18 were found to remain significantly associated with treatment response in the combined screen. Seven of the SNPs were located within genes, while the others were located in the space between genes. Some of the SNPs were located in genes previously linked to processes involved with MS, such as the growth and repair of nerve cells.

“The beneficial outcomes of interferon beta therapy for patients in the relapsing-remitting phase of MS have been clearly shown,” the authors write. “On the other hand, the effect of this treatment is partial, and a substantial amount of patients are not responders. Hence, in the absence of prognostic clinical, neuroradiological and/or immunological markers of response, the question remains who and when to treat when adverse effects, inconvenience and the cost of the drug are significant.”

The identification of genetic mutations that affect response to interferon provides important new information about how the drug functions in the body, bringing medicine one step closer to rational drug design and personalized medicine, the authors note. However, additional research will be needed to fully predict treatment outcomes based on DNA analysis.